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The initial presentation of non-alcoholic steatohepatitis (NASH) is hepatic steatosis. The dysfunction of lipid metabolism 
within hepatocytes caused by genetic factors, diet, and insulin resistance causes lipid accumulation. Lipotoxicity, 
oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum stress would further contribute to hepatocyte 
injury and death, leading to inflammation and immune dysfunction in the liver. During the healing process, the 
accumulation of an excessive amount of fibrosis might occur while healing. During the development of NASH and liver 
fibrosis, the gut-liver axis, adipose-liver axis, and renin-angiotensin system (RAS) may be dysregulated and impaired. 
Translocation of bacteria or its end-products entering the liver could activate hepatocytes, Kupffer cells, and hepatic 
stellate cells, exacerbating hepatic steatosis, inflammation, and fibrosis. Bile acids regulate glucose and lipid metabolism 
through Farnesoid X receptors in the liver and intestine. Increased adipose tissue-derived non-esterified fatty acids 
would aggravate hepatic steatosis. Increased leptin also plays a role in hepatic fibrogenesis, and decreased adiponectin 
may contribute to hepatic insulin resistance. Moreover, dysregulation of peroxisome proliferator-activated receptors 
in the liver, adipose, and muscle tissues may impair lipid metabolism. In addition, the RAS may contribute to hepatic 
fatty acid metabolism, inflammation, and fibrosis. The treatment includes lifestyle modification, pharmacological 
therapy, and non-pharmacological therapy. Currently, weight reduction by lifestyle modification or surgery is the most 
effective therapy. However, vitamin E, pioglitazone, and obeticholic acid have also been suggested. In this review, we will 
introduce some new clinical trials and experimental therapies for the treatment of NASH and related fibrosis. (Clin Mol 
Hepatol 2023;29:77-98)
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is currently the 
most prevalent type of liver disease worldwide. NAFLD is a 
wide hepatic spectrum, ranging from simple steatosis to 
non-alcoholic steatohepatitis (NASH), which leads to progres-
sive fibrosis, cirrhosis, and hepatocellular carcinoma (HCC).1 
Fat accumulation in hepatocytes sensitizes hepatocytes to 
injury, leading to cell death, inflammatory cells recruitment, 
and activation of hepatic stellate cells (HSCs).2 The pathogen-
esis of NASH and its fibrosis has been broadly investigated 
for decades, and the development and progression of NASH 
and liver fibrosis involves complex interplay of numerous de-
terminants. Understanding of the pathogenesis of NASH and 
liver fibrosis is important for the diagnosis and development 
of treatment. Although new drugs have been developed to 
target liver inflammation and fibrosis in NASH, only a minori-
ty of patients achieve treatment response.3 Thus, there is still 
an urgent need to develop new therapeutic agents for NASH.

PATHOGENESIS OF NASH

Development of hepatic steatosis

Diet
High-fat diet can result in hepatic steatosis in humans. Liver 

fat increased by 35% in overweight non-diabetic women af-
ter a 2-week isocaloric high-fat diet (56% total energy from 
fat).4 A 3 days of high-fat, high-energy diet in healthy males 
resulted in major increases in plasma triglyceride (TG) and 
non-esterified fatty acid (NEFA) concentrations and hepatic 
TG.5 A single energy-dense, high-fat meal induced net lipid 

accumulation in the liver of healthy subjects.6 Moreover, 
palm oil administration in lean, healthy individuals decreased 
whole-body, hepatic, and adipose tissue insulin sensitivity by 
25%, 15%, and 34%, respectively; increased hepatic TG and 
ATP content by 35% and 16%, respectively; increased hepatic 
gluconeogenesis by 70%; and decreased glycogenolysis by 
20%.7 In young Finnish adults, serum fatty acid saturation in-
dependently predicted the 10-year risk for fatty liver and 
omega-6 (ω6) fatty acids inversely associated with fatty liver.8 
A long-term hypercaloric diet, rich in saturated fatty acid 
(SFA), showed a marked increase in liver fat content by 50%, 
and ω6 polyunsaturated fatty acids (PUFAs) decreased fatty 
liver in overweight humans.9 However, a lipidomic analysis 
showed that the n-6:n-3 free fatty acids (FFAs) ratio increased 
in NASH livers as compared to normal livers.10 These studies 
suggested that hypercaloric diet, especially high in fat and 
sugar, contribute to the development of fatty liver; SFA and 
fructose are more detrimental, but the role of the ω6/ω3 fat 
ratio also remains controversial.

Physical inactivity 
NAFLD patients have low level of physical activity com-

pared to normal controls. Gerber et al.11 showed that the av-
erage physical activity, counted by an accelerometer of 
NAFLD subjects, was about 28.7 counts/minute/day. In an 
Asian group, prolonged sitting time and decreased physical 
activity level were found to positively associated with the 
prevalence of NAFLD, and these associations were also ob-
served in subjects with body mass index <23 kg/m2.12 How-
ever, the detail mechanism of sedentary behavior or low 
physical activity leading to fatty liver remains unclear. Lower 
expenditure of energy or lower skeletal muscle mass might 
explain a possible connection between sedentary behavior 
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and NAFLD. 

Insulin resistance
NAFLD is strongly associated with reduced whole body in-

sulin sensitivity, as well as increased hepatic and adipose tis-
sue insulin resistance.13,14 Insulin resistance can lead to hepat-
ic fat accumulation by increasing FFA delivery to the liver, 
increasing de novo lipogenesis (DNL), and decreasing hepatic 
fatty acid oxidation. A landmark study performed by Donnel-
ly et al.15 demonstrated that in NAFLD patients, about 59% 
liver triacylglycerol arose from NEFAs, 26.1% from DNL, and 
14.9% from the diet, and that the liver demonstrated recipro-
cal use of adipose and dietary fatty acids. DNL was elevated 
in the fasting state without diurnal variation.15 Insulin resis-
tance can impair the insulin suppression of lipolysis of pe-
ripheral adipose tissues, leading to increased delivery of FFAs 
to the liver.16 Insulin can stimulate sterol receptor binding 
protein 1-c (SREBP1c), increasing DNL in the liver.17,18 Chronic 
hyperinsulinemia results in the cytoplasmic localization and 
inactivation of Foxa2 phosphorylation in hepatocytes, there-
by promoting lipid accumulation and insulin resistance in the 
liver.19

Genetic factors
There are several gene variants associated with NAFLD and 

NASH. The first fatty liver gene identified by Romeo et al.20 is 
patatin-like phospholipase domain-containing 3 (PNPLA3). 
The single nucleotide polymorphism (SNP) rs738409 causes 
the missense sequence variation I148M, impairing the phos-
pholipase activity and increasing hepatic fat content.20 Glu-
cokinase regulatory protein (GCKR) can regulate hepatic glu-
cose uptake and hepatic glucokinase activity, and the 
intronic SNP rs780094 is associated with hepatic lipid con-
tent.21,22 The SNP rs1260326 (C>T; P446L), GCKRP446L can de-
crease the inhibition of glucokinase, leading to increased gly-
colytic flux to hepatocytes, then hepatic steatosis.23 The 
rs58542926 (G>A; E167K) variant, transmembrane 6 super-
family 2 (TM6SF2), was associated with increased hepatic TG 
content.24 The inhibition of TM6SF2 in hepatocytes reduced 
the secretion of very-low-density lipoprotein (VLDL), leading 
to the retention of TGs.25 In a Taiwanese population, a variant 
in the immunity-related GTPase M (IRGM) gene (rs10065172 
TT genotype) independently increased the odds ratio of 
NAFLD by 2.04 by altering hepatic lipid metabolism through 
the autophagy pathway.26 Similarly, the IRGM rs10065172 

variant increased the risk for hepatic steatosis, but not for liv-
er inflammation or fibrosis, in obese Italian children.27 Re-
cently, the mechanisms underlying metabolic and genetic 
components of NAFLD were found to be fundamentally dif-
ferent in patients. The metabolic component is characterized 
by hepatic oversupply of sugars and lipids, while the genetic 
component is characterized by impaired hepatic mitochon-
drial function, reducing the liver’s ability to metabolize these 
substrates.28

Epigenetic factor
Using an epigenome-wide association study in peripheral 

blood cells, 22 CpGs were found to be associated with hepat-
ic fat in European participants; 19 CpGs were annotated to 18 
unique genes upregulated in the liver, including DHCR24, SL-
C43A1, CPT1A, SREBF1, SC4MOL, and SLC9A3R1.29 Some alter-
nations of intrahepatic microRNA (miRNA) have been associ-
ated with hepatic steatosis. The serum levels of miR-122 and 
miR-192 were upregulated in patients with simple steatosis 
compared to normal controls.30 The administration of exo-
somes transfected with obesity-associated miRNA induced 
hepatic steatosis in lean mice.31 miR-122 inhibition in normal 
mice caused increased hepatic fatty acid oxidation.32 De-
creased miR-122-5p in the human liver was associated with 
impaired fatty acid usage.33 However, the deletion of mouse 
miR-122 resulted in hepatosteatosis, inflammation, and the 
development of tumors.34 The expression of miR-34 was ele-
vated in NAFLD patients. miR-34a down-regulated autopha-
gy in hepatocytes by targeting ATG4B and Rab-8B and  
suppressed mitochondrial biogenesis, leading to lipids accu-
mulation in the liver.35

Lipotoxicity

Endoplasmic reticulum (ER) stress
The ER is responsible for protein folding, and the accumula-

tion of misfolded or unfolded proteins leads to stress and the 
activation of the unfolded protein response (UPR).36 There 
are three sensor proteins that activate UPR, namely the inosi-
tol-requiring enzyme 1 (IRE1), the protein kinase R (double-
stranded RNA-activated protein kinase)-like ER kinases 
(PERK), and the activating transcription factor 6. The UPR can 
cause inflammation, inflammasome activation, and death of 
hepatocytes.37 Patients with NASH have been shown to be 
specifically associated with failure to generate X-box-binding 
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protein 1 (XBP-1) protein and activation of JNK.38 Palmitate 
can induce the ER stress response, as demonstrated by the 
increase in C/EBP homologous protein (CHOP) expression, 
eIF2-alpha phosphorylation, XBP-1 splicing, and JNK activa-
tion with increased expression of the BH3-only proteins 
PUMA and Bim.39 Perturbation of membrane lipid composi-
tion could promote IRE1 and PERK activation, suggesting a 
lipid-sensing mechanism for ER sensors to activate the UPR.40 
NFATc1 drives hepatocyte damage and inflammation 
through activation of the PERK-CHOP.41

Mitochondrial dysfunction
Increased hepatic fat would increase hepatic fat oxidation 

with increased mitochondrial respiration;42,43 however, de-
creased efficiency of respiratory chain complexes with great-
er mitochondrial uncoupling and leaking activity was found 
in patients with NAFLD.43,44 Chronic mitochondrial dysfunc-
tion in the state of lipid overload led to excessive leakage of 
electrons from mitochondrial respiratory complexes, leading 
to oxidative stress.45 Voltage-dependent anion channel acted 
as an early sensor of lipid toxicity, and its glycogen synthase 
kinase 3-mediated phosphorylation status controlled outer 
mitochondrial membrane permeabilization in hepatocytes 
with fat accumulation.46 Exposure of hepatocytes to saturat-
ed FFAs caused mitochondrial depolarization, cytochrome c 
release, and increased ROS production.47 Furthermore, intake 
of SFAs can affect the composition of mitochondrial mem-
brane and decrease the efficiency of the respiratory transport 
chain, resulting in increased oxidative stress and chronic liver 
injury.48 Peng et al.49 found that hepatic cardiolipin and ubi-
quinone accumulated in NAFL and the levels of acylcarnitine 
increased with NASH, and proposed that increased levels of 
cardiolipin and ubiquinone may help to preserve mitochon-
drial function in early NAFLD; however, mitochondrial func-
tion eventually fails with the progression of NASH, leading to 
increased acylcarnitine. Moreover, SFAs increased ceramide 
synthesis in hepatocytes,50 which correlated with hepatocyte 
death via mitochondrial failure.51,52

Lysosomal dysfunction
It has been shown that hepatic activity of lysosomal acid li-

pase and lysosomal acidification, which are markers of lyso-
somal dysfunction, are decreased in patients with NAFLD.53,54 
Both steatotic- and asparagine-treated hepatocytes showed 
reduced lysosomal acidity and retention of lysosomal calci-

um.55 FFAs resulted in Bax translocation to lysosomes and ly-
sosomal destabilization with the release of cathepsin B into 
the cytosol, leading to nuclear factor kappa B-dependent tu-
mor necrosis factor alpha expression and apoptosis.56,57 Lyso-
somal permeabilization and cathepsin B redistribution into 
the cytoplasm occurred several hours prior to mitochondrial 
dysfunction.47 Furthermore, autophagy could sequester  in-
tracellular proteins and organelles in double-membrane ves-
icles (autophagosomes) to lysosomes for degradation. Au-
tophagy in the regulation of intracellular lipid stores is called 
macrolipophagy.58 Toxic fatty acids inhibited autophagic flux 
with reduction in lipophagy, which could lead to cell injury.59

Oxidative stress and apoptosis
The main mechanisms of fatty acid-induced damage are 

oxidative stress and increased pro-inflammatory cytokines.2 
These insults from the ER stress, mitochondrial dysfunction, 
and oxidative stress in the hepatocytes after lipid accumula-
tion could cause lipotoxicity, leading to apoptosis, necropto-
tis, or pyrotosis.60,61 Saturated FFAs can also induce apoptosis 
through intrinsic and extrinsic pathways. The oxidative stress 
and ER stress induced by accumulated fatty acids can acti-
vate CHOP and JNK, and then upregulate Bim, Bax, and Bak, 
leading to the release of cytochrome C and caspase 9-associ-
ated apoptosis. In addition, death receptor pathways, includ-
ing TRAIL/TRAIL receptor, tumor necrosis factor-α (TNFα)/
TNF receptor 1 (TNFR1), and Fas ligand/Fas, were noted to be 
activated by FFAs on hepatocytes.62

DEVELOPMENT OF NASH FIBROSIS

Liver fibrosis is the most important risk factor for liver can-
cer in patients with NAFLD and decompensated cirrhosis.63 In 
patients with NAFLD, age and comorbidities, such as hyper-
tension, overweighted, and diabetes mellitus, are risk factors 
for progression of fibrosis.64-66

Lipotoxic damage in hepatocytes would release cytokines 
and chemokines, and then activate innate and adaptive im-
mune cells, including macrophages, dendritic cells, lympho-
cytes, and neutrophils, leading to an inflammation cascade.67 
Damaged hepatocytes also release extracellular vesicles con-
taining exosomes, microparticles, and apoptotic bodies. 
These vesicles, containing signaling proteins, sonic hedge-
hog (Hh), lipids, mRNAs, non-coding RNAs, and DNA, can in-
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duce inflammation, fibrosis by activating non-parenchymal 
cells, and recruitment of immune cells.68,69 Meanwhile, apop-
totic bodies can also be engulfed by stellate cells and subse-
quently induce HSC activation, which increases the expres-
sion of α–smooth muscle actin, transforming growth factor β 
(TGFβ), and collagen type I.70 Moreover, the Hh pathway was 
not only activated in hepatocytes, leading to macrophage 
recruitment and progression of inflammation,71 but it also in-
duced epithelial-to-mesenchymal transitions in ductular-
type progenitors.72 Cholangiocytes and natural killer T cells 
also activated Hh-osteopontin pathway and promoted fibro-
genic responses of HSCs in NASH.73,74

Toxic fatty acids were able to directly affect Kupffer cells 
(KCs) and HSCs, which may contribute to the activation of in-
flammation and fibrosis. Palmitic acids activated toll-like re-
ceptor (TLR) 2 and TLR4 in macrophages with the induction 
of inflammatory signaling.75 KCs exhibited a pro-inflammato-
ry response with elevated levels of TNFα, interleukin (IL)-6, 
and IL-1β after treatment by palmitic acids.75 Palmitate in-
duced ER stress and actin stress fiber formation in activated 
HSCs. Oleate induced the inflammatory signal and decreased 
cytoskeleton proteins in activated HSCs.76 Free cholesterol 
was increased in patients with NAFLD, and the accumulation 
of free cholesterol in HSCs sensitized these cells to TGFβ-
induced activation, leading to exaggerated liver fibrosis in 
NASH.10,77

Insulin exerts profibrogenic activity. Insulin itself induces 
HSC mitogenesis and collagen synthesis.78,79 However, insulin 
enhances the expression of smooth muscle actin-α in quies-
cent, but not in activated HSC through the PI3K/Akt-p70S6K 
pathway.80

HSCs express PNPLA3 and membrane-bound O-acyltrans-
ferase domain-containing protein 7 (MBOAT7).81,82 Increased 
PNPLA3 expression reduces lipid droplet content in HSCs.81 
Autophagy promotes loss of lipids in HSCs to provide energy 
for HSC activation.83 PNPLA3I148M can interfere with retinol 
production and release of HSCs by affecting the retinyl-pal-
mitate lipase activity, which may promote fibrosis progres-
sion.81 The MBOAT7 rs641738 T allele was associated with 
lower protein expression in the liver, and changes in plasma 
phosphatidylinositol species were consistent with decreased 
MBOAT7 function.82 Hepatocyte-specific knockout of Mboat7 
increased hepatic fibrosis with increased total lysophosphati-
dylinositol levels,84 which could promote the initiation of HSC 
activation by stimulating G-protein receptor 55.85 TM6SF2E167K 

was associated with higher risk of advanced fibrosis in NAFLD 
patients.86 Furthermore, the gene encoding for the hepatic 
hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) regu-
lated hepatic phospholipids and chronic liver injury in NAFLD 
patients.87-89 The HSD17B13 rs72613567 variant led to the loss 
of enzyme function, contributing to reduced inflammation 
and f ibrosis in the liver.88 In addition, the HSD17B13 
rs72613567 variant affected retinol metabolism by reducing 
the activity of retinyl-palmitate lipase, mediating antifibrotic 
and anti-inflammation effects.90

Hypomethylation or hypermethylation of genes involved 
in the wound-healing process in NAFLD could be used to dis-
tinguish between patients with mild fibrosis from those with 
severe fibrosis in NAFLD. Hypermethylation at specific CpGs 
within TGFβ1 and PDGF, and hypomethylation at specific 
CpGs within peroxisome proliferator-activated receptor 
(PPAR) α and PPARδ in patients with mild fibrosis, were 
found.91

ORGAN-ORGAN INTERACTION LEADING TO 
PROGRESSION OF NASH AND ITS FIBROSIS

Gut-liver axis

Compared with healthy adults, patients with NAFLD had a 
higher proportion of Firmicutes in the intestine, and the rela-
tive numbers of Bacteroidetes, Enterobacteriaceae, and Ru-
minococcaceae families were reduced.92,93 Dysbiosis may dis-
turb gut barriers, and bacteria and its products from the gut, 
such as endotoxin and cytokines, that promote inflamma-
tion, could enter the liver through blood, and activate the 
immune response in the liver and increase liver inflammation 
and fibrosis.94,95 Compared with healthy people, patients with 
NAFLD had dysbiosis and increased intestinal permeability, 
and patients with steatohepatitis were observed to have en-
dotoxemia.96,97 Low-dose endotoxin stimulations were able 
to produce steatohepatitis in obese mice.98 Conversely, block-
ing the signals caused by the immune system to recognize 
bacteria and its products effectively improved the severity of 
steatohepatitis.99,100 Bacterial products and translocated lipo-
polysaccharide stimulated the hepatic innate immune sys-
tem through TLR4 signaling, predominantly on HSCs and 
KCs.101 TLR4-mediated stimulation of HSCs led to HSC activa-
tion and KC activation.102 In turn, KCs produced TGFβ, stimu-
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lating fibrogenesis, and the proinflammatory cytokines, 
propagating hepatic inflammation. KCs also produced reac-
tive oxygen species, leading to the generation of other reac-
tive nitrogen species and local tissue damage.102,103 Mice fed 
with high-fat diet for only 1 week underwent a diet-induced 
dysbiosis, driving the damage on gut vascular barrier and 
causing bacterial translocation into the liver.104 However, only 
42.1% of patients with steatohepatitis had elevated endotox-
in levels105 and 39.1% of fatty liver patients had increased in-
testinal permeability.106 Therefore, bacterial translocation due 
to gut barrier impairment may play a partial role in the devel-
opment and progression of NAFLD and its fibrosis.

Some metabolites in the blood and feces have been found 
to rely on bacterial synthesis, including choline and choline-
related metabolites, bile acids, short-chain fatty acids (SCFAs), 
and ethanol, which may contribute to the pathogenesis of 
fatty liver. In animal experiments, the gut microbiota of mice 
fed with high-fat diet could convert choline into trimethyl-
amine, reduce the bioavailability of choline, and produce a 
phenomenon similar to choline-deficient diet, leading to de-
creased excretion of VLDL from liver cells and increased liver 
fat accumulation.107 Intestinal dysbiosis would increase the 
deoxycholic acid:chenodeoxycholic acid ratio, reduce the ac-
tivation of farnesoid X receptor (FXR) signaling in the liver, re-
duce insulin sensitivity, increase glycogen and lipogenesis, 
and reduce fatty acid oxidation in the liver.108 At the same 
time, gut dysbiosis also inhibited FXR, reduced the secretion 
of fibroblast growth factor (FGF) 15/19, leading to fatty liv-
er.109 SCFAs, such as acetate, propionate, and butyrate, are the 
products of bacterial fermentation of carbohydrate in the 
gut.110 SCFAs in the intestine enter the liver through the por-
tal vein, and acetate and propionate are precursors for fatty 
acid synthesis and gluconeogenesis, promoting liver fat ac-
cumulation.111 Furthermore, SCFAs bind to G protein-coupled 
receptors of intestinal neuroendocrine L cells to secrete pep-
tide YY and glucagon-like peptide-1 (GLP-1), which promote 
nutrient absorption and liver fat generation.112 Butyrate may 
activate the AMP-activated protein kinase (AMPK) pathway 
in the liver, leading to the inhibition of oxidative stress and 
inflammation, upregulation of fatty acid oxidation, downreg-
ulation of fat synthesis genes, and reduced hepatosteatosis.113 
Interestingly, patients with NAFLD and severe hepatic fibrosis 
had more acetate in the stool, while those with milder severi-
ty of NAFLD had more SCFAs in butyrate and propionate.114 
Moreover, the concentration of ethanol in the blood of pa-

tients with NAFLD increased, and the bacteria Proteobacteria, 
which could produce ethanol, also tended to increase in pa-
tients with steatohepatitis. Ethanol destroys the tight binding 
protein of the intestinal wall, increases the intestinal permea-
bility, and increases the endotoxin entering blood and the 
liver, leading to liver inflammation.115

Adipose tissue-liver axis

Adipose tissues secrete adiponectin, leptin, and some pro-
inflammatory cytokines, such as IL-6 and TNFα, which would 
influence the liver. Adiponectin binds to adiponectin recep-
tors 1 and 2, respectively activates AMPK and PPAR-alpha 
pathways in the liver, and stimulate glucose use and fatty 
acid oxidation.116,117 Adiponectin also increases carnitine pal-
mitoyltransferase I activity, enhances hepatic fatty acid oxi-
dation, and decreases the activities of acetyl-CoA carboxyl-
ase and fatty acid synthase.118 However, adiponectin 
produced mainly from white adipose tissue is decreased in 
NASH patients.119 When obesity develops, leptin secreted 
from white fatty tissue is increased to inhibit appetite and in-
crease fatty acid oxidation.120 However, in obese individuals, 
leptin resistance develops, and the increased leptin would 
exert proinflammatory activity. The serum leptin levels are 
positively associated with the severity of liver inflammation 
and fibrosis.121,122 Leptin augments the endothelin-1-induced 
contraction of HSCs.123 Adipocytes also secrete TNFα,124 which 
can increase insulin resistance and have pro-inflammatory 
effects.125 TNFα increased the gene expression of Mcp1, Tgfb1, 
and Timp1 in hepatocytes, and the Tnf knockout improved 
glucose tolerance and significantly reduced the prevalence 
of hepatic steatosis and fibrosis in mice, indicating that TNFα 
plays a role in the development and progression of NASH.126 
IL-6 can be secreted from adipocytes, which can then in-
crease the macrophage infiltration of adipose tissue.127 IL-6 
infusion induces hepatic insulin resistance through increased 
adipose tissue lipolysis.128 These data suggest that IL-6 is in-
volved in the pathogenesis of hepatic insulin resistance. 

Renin-angiotensin system (RAS)

Hypertensive patients with biopsy-proven NAFLD on base-
line RAS blockers had less advanced hepatic fibrosis.129 Re-
cently, a large retrospective study showed that angiotensin-
converting enzyme inhibitors/angiotensin receptor blockers 
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were associated with lower risk of hepatocellular carcinoma 
and cirrhotic complications in patients with NAFLD.130 These 
data suggested a beneficial effect of RAS blockers in NAFLD. 
Transgenic hypertensive rats overexpressing the mouse renin 
gene with elevated levels of tissue angiotensin II developed 
hepatic steatosis, inflammation, and fibrosis.131 The mice lack-
ing the renin gene fed with high-fat diet had decreased liver 
fat.132 Aliskiren, a direct renin inhibitor, reduced hepatic ste-
atosis in high-fat diet-fed mice and fibrosis in mice fed with 
methionine-choline-deficient diet.133,134 When renin or pro-
renin binds to the (pro)renin receptor (PRR), in addition to in-
creasing the production and role of angiotensin (ANG II de-
pendent pathway), it activates TGFβ, plasminogen activator 
inhibitor-1 (PAI-1), fibronectin, and collagen I independently 
from Ang II (ANG II independent pathway).135-137 Our group 
found that PRR contributed to liver fibrosis and HSC activa-
tion, and its down-regulation attenuated liver fibrosis 
through inactivation of the ERK/TGFβ1/Smad3 pathway.138 
These results indicate that renin and prorenin can directly ac-
tivate renin (pro) receptor-related intracellular signaling 

pathways, including ERK, TGFβ, cyclooxygenease2, fibronec-
tin, collagen I, and PAI-1 independently of angiotensin II to 
induce fibrosis. Moreover, Ren et al.139 used N-acetylgalactos-
amine modified antisense oligonucleotides to suppress PRR 
expression in hepatocytes of high-fat diet-fed C57BL/6 mice, 
and found that PRR inhibition reduced acetyl-CoA carboxyl-
ase and pyruvate desorption hydrogenase protein expres-
sion. This change reprogrammed liver lipid metabolism, re-
sulting in reduced lipid synthesis and increased fatty acid 
oxidation. As a result, liver PRR suppression attenuated diet-
induced obesity and fatty liver.139 The proposed pathogenesis 
that is involved from steatosis to fibrosis in patients with 
NAFLD is shown in Figure 1. 

PROGRESSION OF NASH TO HCC

NASH is now the most common risk factor for HCC in the 
United States.140 The potential pathways linking NASH to HCC 
include chronic inflammation of the liver,141 alternations in 

Figure 1. Progression of hepatic steatosis to inflammation and fibrosis in liver. Both metabolic and genetic factors contribute to the formation 
of hepatic steatosis. Fat accumulation in hepatocytes leads to organelles dysfunction and lipotoxicity. Then, oxidative stress species or signal-
ing molecules are transmitted through extracellular vesicles or diffusion, activating other parenchymal and non-parenchymal cells, which sub-
sequently causes inflammatory cascades, steatohepatitis, and liver fibrosis. On the other hand, gut-derived bacterial end-products, metabo-
lites, gut hormones, adipose tissue-derived cytokines or adipokines, and renin-angiotensin-system all contribute to the progression from 
steatosis to inflammation and fibrosis. SFA, saturated fatty acid; TG, triglyceride; ER, endoplastic reticulum; HH-OPN, Hedgehog-osteopontin; 
KC, Kupffer cell; HSC, hepatic stellate cell.
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immune response, lipid metabolism and gut microbiome,142 
and genetic factors. Enhanced IL-6 and TNF production dur-
ing NAFLD cause hepatic inflammation and activation of the 
oncogenic transcription factor STAT3.143 ER stress contributes 
to NASH-driven hepatic tumorigenesis via TNFR1.144 The he-
patic oxidative DNA damage was increased in patients with 
NASH who developed HCC.145 The unconventional prefoldin 
RPB5 interactor-induced DNA damage in hepatocytes trig-
gered inflammation via T helper 17 lymphocytes and inter-
leukin 17A, contributing to NASH and HCC development.146 
Furthermore, NAFLD caused a selective loss of intrahepatic 
CD4(+) but not CD8(+) T lymphocytes, which led to acceler-
ated hepatocarcinogenesis.147 Neutrophil infiltration was 
characterized in NASH-HCC and can exist in both tumor pro-
moting and suppressing states.148 Fatty acid accumulation in-
creased junctional protein associated with coronary artery 
disease, leading to the activation of Yes-associated protein 1 
and tumor growth.149 Dysregulated mammalian target of ra-
pamycin stimulated sphingolipid and glycerophospholipid 
synthesis, leading to steatosis and HCC.150 In NASH-driven 
HCC, metabolic reprogramming mediated by the downregu-
lation of carnitine palmitoyltransferase 2 enables HCC cells to 
escape lipotoxicity and promotes hepatocarcinogenesis.151 
MicroRNA-21 can promote hepatic lipid accumulation and 
cancer progression by interacting with the sHbp1-p53-Sreb-
p1c pathway.152 The intestinal dysbiosis, gut permeability 
changes, and lipopolysaccharides translocation to the liver in 
NASH may increase secretion of the epiregulin growth factor, 
which triggers tumor hepatocyte proliferation.153 Moreover, 
carriage of the PNPLA3 rs738409 C>G polymorphism is asso-
ciated with a greater risk of NASH-HCC.154

TREATMENT FOR NASH

Non-pharmacological therapy

Lifestyle modification
Lifestyle changes by eating less and exercising more to 

achieve weight loss remain the cornerstone of clinical care. 
Hypocaloric diet with a reduction of body weight decreased 
total body fat, visceral fat, and intrahepatic lipid content.155 
Some existing guidelines suggest restriction of energy by 
1,200–1,500 kcal/day or a reduction of 500–1,000 kcal/day to 
achieve weight loss.1,156-158 Weight reduction is beneficial for 

both non-obese (3–10%)159 and obese patients (≥0%).160,161 
Other dietary compositions that may be beneficial for NAFLD 
includes omega-3 PUFA and coffee. Omega-3 PUFA has been 
shown to increase insulin sensitivity162 and ameliorate steato-
hepatitis in experimental studies.163,164 One meta-analysis in-
volving nine studies with 355 patients showed decreased liv-
er fat in patients with PUFA treatment.165 Coffee is not only 
associated with a reduced risk of NAFLD but also decreased 
risk of liver fibrosis among patients with NAFLD.166,167 Regular 
exercise helps to enhance the effects of diet modifications. 
Physical activity with a target at least 150 min/week of mod-
erate-intensity or 75–150 min/week of vigorous-intensity 
aerobic exercise is suggested.1,156-158 Both aerobic and resis-
tance exercises reduce the hepatic fat content.168,169 In addi-
tion, the intensity of exercise may be more important than 
the duration or total volume.170 In conclusion, lifestyle inter-
ventions to promote weight loss, which include both diet 
and exercise, are proven therapeutic strategies to improve 
fatty liver disease.

Surgery
Bariatric surgery provides sustained and durable weight 

loss and improving obesity-related diseases.171,172 Currently, 
the most commonly performed bariatric procedures are lap-
aroscopic sleeve gastrectomy (LSG) and Roux-en-Y gastric 
bypass. Two meta-analyses showed that bariatric surgery re-
sulted in a biopsy-confirmed resolution of steatosis (56–
66%), inflammation (45–50%), ballooning degeneration (49–
76%), and fibrosis (25–40%), as well as reduction of NAFLD 
activity score (NAS).173,174 A higher rate of improvement in ste-
atosis and hepatic fibrosis was observed in Asian countries 
compared to non-Asian countries.174 In addition, bariatric sur-
gery was associated with decreased progression of NAFLD to 
cirrhosis175 and reduced risks of any cancer and obesity-relat-
ed cancer in NAFLD patients with severe obesity, particularly 
in cirrhotic patients.176 However, new or worsening cases of 
NAFLD were found in 12% of patients after bariatric sur-
gery.173 Bariatric surgery was associated with a significantly 
lower risk of incident major adverse liver outcomes (2.3% vs. 
9.6% at 10 years) and major adverse cardiovascular events 
(8.5% vs. 15.7% at 10 years), as compared with non-surgical 
management.177

Endoscopic therapy 
Endoscopic bariatric therapies, including intragastric bal-
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loons (IGB), endoscopic sleeve gastroplasty (ESG), duodenal 
mucosal resurfacing (DMR), and duodenal-Jejunal bypass lin-
er (DJBL), were recently introduced as less invasive modalities 
to treat obesity and metabolic comorbidities. In a meta-anal-
ysis, improvement in steatosis and NAS were seen in 79.2% 
and 83.5% of patients receiving IGB, respectively.178 Improve-
ment of fibrosis for 1.5 stage by MR elastography was seen in 
50% of patients with NAFLD after IGB placement.179 ESG re-
duced the body weight by up to 15% and improved hepatic 
steatosis and fibrosis at 2 years of follow-up in obese patients 
with NAFLD.180 Studies for efficacy and safety of ESG 
(NCT03426111; NCT04653311) and the comparison of ESG vs. 
LSG (NCT04060368) in patients with NASH are ongoing. DMR 
has been shown to reduce alanine aminotransferase, aspar-
tate aminotransferase, and fibrosis-4 scores in patients with 
diabetes mellitus.181 Recently, an observational study of 32 
obese patients with diabetes mellitus who underwent DJBL 
showed improved non-invasive markers of steatosis and 
NASH, but not fibrosis. The role of DJBL on NAFLD needs to 
be further evaluated.182

Fecal microbiota transplantation 
Some studies have suggested that fecal transplantation 

helps ameliorate steatohepatitis.183,184 A randomized con-
trolled trial (RCT) using allogenic fecal microbiota transplan-
tation (FMT) from lean vegan donors for patients with NAFLD 
through duodenal infusion found that there was no signifi-
cant improvement in NAS, steatosis, and fibrosis scores. How-
ever, they observed a trend of improving necro-inflammato-
ry scores and beneficial changes in hepatic gene expression 
and plasma metabolites involved in inflammation and lipid 
metabolism following allogenic FMT.185 Another RCT using al-
logenic FMT via endoscopic duodenal infusion in patients 
with NAFLD found that FMT did not improve insulin resis-
tance and hepatic steatosis but reduced small intestinal per-
meability at 6 months of follow-up.186

Pharmacological therapy

The pharmacological agents predominantly target the fol-
lowing four mechanisms: 1) hepatic fat accumulation; 2) oxi-
dative stress, inflammation, and apoptosis; 3) gut-liver axis, 
including bile acids, gut microbiomes, and metabolic endo-
toxemia; and 4) hepatic fibrosis.187 The agents targeting dif-
ferent pathways are described below, and those with promis-

ing results are summarized in Table 1.

Agents targeting hepatic fat accumulation 
Pioglitazone, a PPAR γ agonist, improved hepatic steatosis, 

inflammation, and hepatocellular ballooning.188,189 Similar ef-
fects were found in Asian NASH patients.190 In the phase 3 RE-
SOLVE-IT trial, Elafibranor, a dual PPAR α/δ agonist, failed to 
achieve NASH resolution.191 Pemafibrate, a selective PPAR α 
modulator, did not decrease liver fat but caused a significant 
reduction in fibrosis for 6.2% of magnetic resonance elastog-
raphy-based liver stiffness.192 Lanifibranor, a pan-PPAR ago-
nist, significantly decreased the steatosis-activity-fibrosis ac-
tivity score for at least 2 points in 55% of the patients at 24 
weeks.193

GLP-1 agonists increase insulin secretion, inhibit glucagon 
secretion, delay gastric emptying, and decrease appetite. 
NASH resolution was observed in 39% of patients who re-
ceived liraglutide for 48 weeks and in 59% of patients who 
received semaglutide for 72 weeks.194,195 However, fibrosis im-
provement was insignificant in both studies. 

Sodium-glucose cotransporter 2 (SGLT2) inhibitors increase 
the urinary excretion of glucose. A meta-analysis of 10 RCTs 
showed that SGLT2 inhibitors can reduce aminotransferases 
and hepatic fat.196

FGF19 and FGF21 are endocrines that regulate energy ho-
meostasis. Aldafermin, a FGF19 analogue, led to reductions 
of liver fat content and a trend toward fibrosis improve-
ment.197 Pegbelfermin and efruxifermin are long-acting, re-
combinant analogues of human FGF21, and both have shown 
effects of reducing liver fat.198,199

Two phase IIa trials investigated the effects of acetyl-coen-
zyme A carboxylase (ACC) inhibitor monotherapy (PF-
05221304) and combination with a diacylglycerol O-acyl-
transferase 2 (DGAT2) inhibitor (PF-06865571). Both PF-
05221304 monotherapy and co-administration with PF-
06865571 reduced liver fat content.200

Stearoyl-coenzyme A desaturase 1 (SCD-1) is a key enzyme 
that catalyzes the biosynthesis of monounsaturated fatty ac-
ids. A phase IIb trial (ARREST trial) showed that aramchol (a 
liver-targeted SCD-1 inhibitor) 600 mg did not cause a signifi-
cant reduction in liver fat content. Nevertheless, the ob-
served change in liver histology and biochemical improve-
ment suggests a potential role of aramchol in treating NASH 
and fibrosis.201

Thyroid hormone receptor-β (THR-β) is predominantly ex-
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pressed in the hepatocytes. Resmetirom, a selective THR-β 
agonist, significantly reduced more than 30% of hepatic fat 
after 12 and 36 weeks of treatment in patients with NASH in 
phase II trial.202

Agents targeting oxidative stress, inflammation, and 
apoptosis

Vitamin E, an antioxidative agent, demonstrated benefits 
on hepatic decompensation and transplant-free survival in 
patient with NASH.203 The PIVENS study, which compared the 
effects of vitamin E, pioglitazone, and placebo in NASH pa-
tients without diabetes, showed that vitamin E (800 interna-
tional units/day), but not pioglitazone, significantly improved 
NASH.204

Apoptosis signaling kinase 1 (ASK1) promotes apoptosis, 
inf﻿lammation, and fibrosis in the liver. However, selonsertib, 
an ASK1 inhibitor, failed to improve fibrosis in NASH patients 
with bridging fibrosis or compensated cirrhosis.205

Berberine ursodeoxycholate is an ionic salt of berberine 
and ursodeoxycholic acid. It reduced 4.8% of liver fat and im-
proved glycemic control as well as liver enzymes in patients 
with NASH and diabetes.206

Agents targeting gut-liver axis
In a phase IIb study, obeticholic acid (OCA), a FXR agonist, 

improved liver histology in 21% of NASH patients.207 In pa-
tients with NASH and diabetes, OCA demonstrated the ef-
fects of increasing insulin sensitivity and reducing markers of 
liver inflammation as well as fibrosis.208 In the interim analysis 
of a phase III trial, both 10-mg and 25-mg doses of OCA im-
proved fibrosis (18% and 23%, respectively), but the NASH 
resolution endpoint was not met.209 This study is ongoing to 
assess the clinical outcomes.

Agents targeting liver fibrosis
Caspase is a protease that is associated with apoptosis and 

inflammation in the liver.  However, emricasan, a pan-cas-
pase inhibitor, did not improve fibrosis or resolution of 
NASH.210 Besides, for patients with NASH-related cirrhosis 
and severe portal hypertension, emricasan did not improve 
hepatic venous pressure gradient (HVPG) or liver-related out-
comes.211

In a phase IIb CENTAUR trial, a 2-year study, cenicriviroc, a 
dual C-C chemokine receptor types 2 and 5 antagonist, 
achieved ≥1-stage of fibrosis improvement without worsen- Ta
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ing of NASH after 1 year of treatment compared to placebo 
(20% vs. 10%).212 And a great proportion (60%) of the patients 
who achieved fibrosis response at the first year  maintained 
fibrosis  reduction at the second year.213 The long-term im-
pact of cenicriviroc on fibrosis needs to be further investigat-
ed.

Belapectin, a galectin-3 inhibitor, did not significantly re-
duce HVPG or fibrosis in patients with NASH, cirrhosis, and 
portal hypertension; however, in a subgroup of patients 
without esophageal varices, belapectin reduced HVPG as 
well as the development of esophageal varices.214

Information about the ongoing phase III clinical trials of 
promising drugs on phase II studies are listed in Table 2.

Combination therapy 
NAFLD is a multifactorial disease, and combining therapies 

with different targets may have synergistic effects.215 Cilofex-
or (FXR agonist) plus firsocostat (ACC inhibitor) led to im-
provements in NASH activity compared to placebo, or single 
agent in patients with bridging fibrosis and cirrhosis.216 
Semaglutide with firsocostat and/or cilofexor showed greater 
improvements in liver steatosis and liver biochemistry com-
pared to semaglutide alone.217 Combining ACC inhibitors and 
DGAT2 inhibitors reduced liver fat content and mitigated the 
side effect of elevated serum TGs.200

PERSPECTIVES

As understanding of mechanisms of NASH and its fibrosis 
increases, more therapies will be introduced and tested in 
clinical trials. The pathogenesis of NASH and fibrosis is com-
plex; therefore, it would be difficult to treat the disease using 
just one therapy. Combination therapy is the focus in the fu-
ture development of treatment. Furthermore, better care of 
extra-hepatic complications of NASH, novel biomarkers for 
diagnosis, risk stratification and treatment responses, and 
more clinical trials in Asian groups should also be well re-
searched and developed.
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