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Study Highlights
•	 We used a multi-omics approach to investigate the genomes, epigenomes, and transcriptomes of 134 MASLD patients 

and identified 1,955 MASLD-associated features. Then, we used machine learning to select the features that most accura-
cy track MASLD progression. From this analysis, CAPG, HYAL3, WIPI1, TREM2, SPP1, and RNASE6 stood out as a signature 
gene set useful for discriminating the stages of MASLD progression. This signature gene set was verified using indepen-
dent cohorts of MASLD, MASLD-associated cirrhosis, and liver cancer patients, suggesting it represents a group of bio-
markers that apply to the full spectrum of MASLD-associated disease. 



249

 Sumin Oh, et al. 
Signature gene set for discrimination of MASLD progression

http://www.e-cmh.org https://doi.org/10.3350/cmh.2023.0449

INTRODUCTION

Metabolic dysfunction-associated steatotic liver disease 
(MASLD) is a metabolic disease characterized by fat accumu-
lation in the liver.1-3 MASLD includes simple steatosis, which is 
relatively early-stage and low risk, and metabolic dysfunc-
tion-associated steatohepatitis (MASH), which is late-stage 
disease characterized by serious liver inflammation and fibro-
sis.4-6 Since MASH is often a precursor of cirrhosis, liver cancer, 
and liver failure, it is critical to discriminate between steatosis 
and MASH to guide patient treatment.7-9 MASLD can be diag-
nosed using various non-invasive assessment methods, in-
cluding imaging techniques, blood tests, and fibrosis assess-
ment. However, a combination of these methods is required 
for a more accurate diagnosis and to assess the severity of 
MASLD.10-12 This underscores the need to identify novel mo-
lecular markers that would facilitate a faster and more pre-
cise MASLD staging.

Genome, transcriptome, and epigenome sequencing have 
already suggested potential biomarkers of MASLD in previ-
ous studies.13 Genetic variants, specifically single nucleotide 
polymorphism (SNPs) in PNPLA3, GCKR, TM6SF2, and AGXT2, 
have been associated with MASLD progression.14,15 Compre-
hensive RNA-seq analyses have identified differentially ex-
pressed genes (DEGs) related to MASLD, providing insights 

into its severity involving processes such as the ablation of 
extracellular molecules, cytokine responses, and immune 
system functions.16,17 In addition, epigenetic markers, particu-
larly DNA methylation, have been explored. DNA methyla-
tion signatures related to age acceleration were correlated 
with MASLD severity, and hepatic fat-associated CpGs in pe-
ripheral blood samples of patients with type 2 diabetes re-
vealed differentially methylated regions (DMRs), including 
ABCG1, CPT1A, and TMEM50B.18,19 Despite these efforts un-
covering significant markers associated with various stages 
of MASLD progression, securing the optimal gene set for ac-
curately diagnosing a patient’s specific stage of MASLD pro-
gression remains an ongoing challenge.

Therefore, we decided to collect and analyze genomic, 
epigenomic, and transcriptomic data from a single cohort of 
patients progressing from steatosis to MASH, aiming to iden-
tify features that would enable an accurate diagnosis of 
MASLD stages. By feeding the MASLD-associated into a se-
ries of machine learning models that used linear regression 
methods, we were able to identify a set of 6 MASLD signature 
genes accurate enough to discriminate MASLD stage. We 
verified the utility of this gene set by using them to distin-
guish an independent cohort of MASLD and liver cancer pa-
tients from controls. Thus, this gene set will likely prove use-
ful for the early diagnosis of MASLD and in guiding MASLD 

Background/Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by fat 
accumulation in the liver. MASLD encompasses both steatosis and MASH. Since MASH can lead to cirrhosis and liver 
cancer, steatosis and MASH must be distinguished during patient treatment. Here, we investigate the genomes, 
epigenomes, and transcriptomes of MASLD patients to identify signature gene set for more accurate tracking of MASLD 
progression. 

Methods: Biopsy-tissue and blood samples from patients with 134 MASLD, comprising 60 steatosis and 74 MASH 
patients were performed omics analysis. SVM learning algorithm were used to calculate most predictive features. Linear 
regression was applied to find signature gene set that distinguish the stage of MASLD and to validate their application 
into independent cohort of MASLD.

Results: After performing WGS, WES, WGBS, and total RNA-seq on 134 biopsy samples from confirmed MASLD patients, 
we provided 1,955 MASLD-associated features, out of 3,176 somatic variant callings, 58 DMRs, and 1,393 DEGs that track 
MASLD progression. Then, we used a SVM learning algorithm to analyze the data and select the most predictive features. 
Using linear regression, we identified a signature gene set capable of differentiating the various stages of MASLD and 
verified it in different independent cohorts of MASLD and a liver cancer cohort.

Conclusions: We identified a signature gene set (i.e., CAPG, HYAL3, WIPI1, TREM2, SPP1, and RNASE6) with strong potential 
as a panel of diagnostic genes of MASLD-associated disease. (Clin Mol Hepatol 2024;30:247-262)
Keywords: MASLD; Multi-omics; Machine learning; Signature gene set; Biomarker
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patient treatment.

MATERIALS AND METHODS

Sample and sequencing library preparation

Pathologically proven biopsy-tissue and blood samples 
were obtained from a cohort of 134 MASLD patients, com-
prising 60 steatosis and 74 MASH patients in the study cohort 
who were recruited from the Dong-A University Hospital (In-
formed consent was obtained from all subjects, DAUHIRB- 
17-197) and Onhospital (Informed consent was obtained 
from all subjects, ONHIBR-19-001), Busan, Rep. of Korea. All 
fresh samples were frozen immediately after biopsy and 
stored at –70℃ according to the protocols approved by the 
institutional review board for the human subject guideline 
that is in accordance with the principles of the Declaration of 
Helsinki. Hospital medical records and pathology reports of 
patients were reviewed by internal pathologist. The clinical 
features and the information of samples used for NGS analy-
sis were provided in Supplementary Table 1 and Supplemen-
tary Table 2. For whole genome sequencing (WGS) and 
whole exome sequencing (WES), DNA was extracted from 
tissues and blood from MASLD patients. WGS libraries were 
generated using TruSeq Nano DNA (350), and 150-bp paired-
end reads were sequenced on the Illumina platform. WES li-
braries were prepared using the SureSelectXT Library Prep 
Kit, and 100-bp paired-end reads were sequenced on the Il-
lumina platform. For whole genome bisulfite sequencing 
(WGBS), samples were prepared using the Accel-NGS Methyl-
Seq DNA Library Kit and the EZ DNA Methylation-Gold Kit. 
Then, 150-bp paired-end reads from the resulting libraries 
were sequenced on the Illumina platform. For total RNA-seq, 
RNA was extracted from the tissues of MASLD patients. Li-
braries were generated using the TruSeq Stranded Total RNA 
LT Sample Prep Kit, and 100-bp paired-end reads were se-
quenced on the Illumina platform (All sequencing was car-
ried out by Macrogen, Inc., Seoul, Korea).

Detailed experimental procedures for histological diagno-
sis, genomic and epigenomic analysis, transcriptome analy-
sis, machine learning, open chromatin accessibility analysis, 
statistics, high-fat diet (HFD) mouse model, hematoxylin and 
eosin (H&E) and with periodic acid schiff (PAS) staining, he-
patocyte organoid culture, free fatty acid (FFA) treatment 

and Oil Red O staining and qRT-PCR are provided in supple-
mentary information. 

RESULTS

Identification of MASLD-associated somatic 
variants

To discover MASLD-associated markers, we took a multi-
omics approach, looking at genomic, epigenomic, and tran-
scriptomic data from WGS, WES, WGBS, and total RNA-seq 
using pathologically-proven biopsy tissue samples obtained 
from 134 MASLD patients (Fig. 1A). First, to limit our explora-
tion to somatic markers that offer insights into genetic 
changes occurring in diseased cells, enhancing our under-
standing of the molecular basis of the disease, we eliminated 
any germline mutations by comparing WGS data obtained 
from liver biopsies with those obtained from blood samples 
(Fig. 1B). By integrating WES data screening for somatic vari-
ants in exon regions likely to affect the function of genes, we 
narrowed our search to 3,888 somatic variant callings. Of 
these, 79% (3,054) were classified as type of missense muta-
tions. The most common type of somatic variant was the 
SNP, specifically the SNV in which a T nucleotide was altered 
to a C (Supplementary Fig. 1). Then, we focused on 504 differ-
ent genes with 861 somatic variant sites detected in more 
than two of the 120 MASLD patient samples (Supplementary 
Table 3). These 504 genes with MASLD-associated somatic 
variants were broadly distributed throughout all chromo-
somes (Fig. 1C). Next, we asked whether the variants in these 
504 genes were exclusive mutations (Fig. 1D). We found that 
346 of 504 genes (69%) with the variants were exclusive, but 
the remaining 158 genes (31%) showed multiple, non-exclu-
sive variants. Among them, genes mostly showed two varia-
tion sites. When we classified the various exclusive or non-
exclusive variants in individual genes (Fig. 1E), we found 
missense mutations were the most common in both genes 
with exclusive and non-exclusive variants. In genes with non-
exclusive variants, we observed cases in which two of the 
same type of variation appeared along with cases showing 
combinations of two or more different types. To determine 
the contribution of these MASLD-associated somatic variants 
to gene expression, we analyzed the expression levels of the 
504 genes between their altered and non-altered groups 
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Figure 1. MASLD-associated somatic variants identified through comprehensive WGS and WES analysis. (A) Overall research strategy for iden-
tifying MASLD-associated features via a multi-omics approach. (B) Pipeline for calling somatic variants. (C) Distribution of genes with MASLD-
associated somatic variations across the chromosomes. (D) Pie chart showing genes with exclusive or non-exclusive variants. (E) Dot plot pre-
senting the types of mutations in genes with exclusive or non-exclusive variants. (F) Dot plot showing gene expression changes between the 
altered and non-altered groups. MASLD, metabolic dysfunction-associated steatotic liver disease; WES, whole exome sequencing; WGBS, 
whole genome bisulfite sequencing; WGS, whole genome sequencing; DEGs, differentially expressed genes; DMRs, differentially methylated 
regions.
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(Fig. 1F). We found 16.76% (58) of the 346 genes with exclu-
sive variations showed a statistically significant differences in 
their expression level, while only 9.49% (15) of the 158 genes 
with non-exclusive variants showed statistically significant 
expression changes.  

Since variations of PNPLA3, TM6SF2, and AGXT2 have all 
been reported as genetic factors contributing to MASLD, we 
also examined the variations on these genes and detected in 
the WGS results from both liver tissues and in blood, suggest-
ing they are instead germline mutations (Supplementary Fig. 
2). In our cohort, a PNPLA3 variation (rs738409 C>G), a 
TM6SF2 variation (rs58542926 C>T), and an AGXT2 variation 
(rs2291702 T>C) were detected in 76.67%, 25.83%, and 
67.50% of the samples, respectively (Supplementary Fig. 2A). 
We confirmed diminished expression levels of these genes in 
the steatosis and MASH altered groups, with remarkable re-

ductions in homozygous variants (Supplementary Fig. 2B 
and 2C). Thus, these MASLD-related genetic variations were 
common in our cohort, but they were excluded because we 
were searching specifically for somatic mutations. From 
these results, we suggest MASLD-associated somatic varia-
tions in 504 genes.

Differentially methylated regions in MASLD

Next, to identify DMRs associated with MASLD, we per-
formed WGBS in 104 MASLD patients (Fig. 2). We identified 
87 DMRs with p-values less than 0.05 in the comparison be-
tween steatosis and MASH samples. 68 of 87 DMRs (78%) 
were located within known CpG regions and 58 of these 
DMRs (66.7%) were annotated to reference genes (Supple-
mentary Table 4). Of these 58 DMRs, 13 DMRs were hypo-

Figure 2. Identification of differentially methylated regions associated with MASLD progression. (A) Scatter plot showing genes with a meth-
ylation ratio that is significantly different between steatosis and MASH samples. (B) Correlation between DNA methylation status and gene ex-
pressions. (C) Representative loci showing hypermethylation in the PACS2 and hypomethylation in the PEG10 promoter. MASLD, metabolic 
dysfunction-associated steatotic liver disease; MASH, metabolic dysfunction-associated steatohepatitis.
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methylated and 45 DMRs were hypermethylated in MASH 
(Fig. 2A). We next asked whether the differential methylation 
associated with MASLD progression also contributed to gene 
expressions (Fig. 2B). As results, of the 13 genes with hypo-
methylated CpGs and the 45 genes with hypermethylated 
CpGs, 38.4% (5) and 68.8% (31) showed inverse correlations 
with gene expression, respectively. Indeed, the correlation 
coefficients comparing methylation status and gene expres-
sion were statistically significant (P-value=3.07E-03). Figure 
2C shows the hypermethylated promoter region of PACS2 
and the hypomethylated promoter of PEG10 as examples of 
altered genes associated with MASH. Together, our results of 
epigenomic analysis provided MASLD-associated DMRs that 
could affect disease progression through the regulation of 

gene expression.  

Genes related to MASLD progression 

Next, to investigate genes related to MASLD progression, 
we performed a total RNA-seq analysis and found 1,393 DEGs 
in the comparison of steatosis and MASH (Supplementary Ta-
ble 5). Among these, 645 steatosis- and 748 MASH-enriched 
genes were defined by a 1.3-fold or greater change in expres-
sion level between MASLD stages (Fig. 3A). To understand 
the function of steatosis- and MASH-enriched genes, we per-
formed analysis of GO (Fig. 3B), motif search, and TRRUST en-
richment (Fig. 3C). Results of these analysis showed DEGs 
were involved in terms of cell-cell adhesion, metabolic pro-

Figure 3. Transcriptomic profiling of MASLD progression. (A) Line plot representing gene expression fold change in the comparison between 
steatosis and MASH samples. (red, MASH-enriched genes; blue, steatosis-enriched genes). Heat map showing the expression levels of 1,393 
genes in 133 MASLD patients. (B) Bar plots showing the results of GO analysis for steatosis- and MASH-enriched genes. (C) Representative re-
sults of a motif search analysis and TRRUST analyses. Left bar, motif search results based on known or de novo motif sequences; right bar, the 
results of the enrichment analysis by TRRUST. MASLD, metabolic dysfunction-associated steatotic liver disease; MASH, metabolic dysfunction-
associated steatohepatitis; GO, Gene ontology; DEGs, differentially expressed genes.
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cess, and cytokine signaling and were regulated by transcrip-
tion factors such as NFκB, JUN, and SMAD3/4 have already 
been associated with MASLD progression. 

Integrated networks of MASLD-associated 
features within functional modules

From MASLD-associated somatic variations, DMRs, and 
DEGs we identified, we designated 1,955 as MASLD-associat-
ed features. We next investigated whether these MASLD-as-

sociated features collaborate in functional modules (Fig. 4). 
Considering the proportion of MASLD-associated features in 
each module, frequency represented in terms for steatosis- 
or MASH-enriched genes, we found dominant 6 functional 
modules such as response to cytokine, regulation of immune 
system process, cell cycle, regulation of phosphorus meta-
bolic process, inflammatory response, and lipid localization 
(Fig. 4A). MASLD-associated features accounted for about 
10% of the list corresponding to genes annotated from the 
public database of functional modules. Since MASLD-associ-

Figure 4. Comprehensive networks of MASLD-associated features within functional modules. (A) Representative MASLD-associated func-
tional modules. The proportion of genes with MASLD-associated somatic variants (blue), DMRs (red), and DEGs (black) in each individual func-
tional module (The range for black is 0–20%, for blue is 0–5%, and for red is 0–1%). (B) Circular plot indicating that individual functional mod-
ules included genetic, epigenetic, and transcriptomic features. (C) Bar plot showing the proportion of MASLD-associated somatic variations, 
DMRs, and DEGs assigned to functional modules. (D) Line plot showing that MASLD-associated features were simultaneously related with one 
another in functional modules. (E) Maps of the PPI networks of MASLD-associated features involved in the response to cytokines and regula-
tion of immune system processes modules. MASLD, metabolic dysfunction-associated steatotic liver disease; DMRs, differentially methylated 
regions; DEGs, differentially expressed genes; PPI, protein-protein interaction.
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ated features may simultaneously be MASLD-associated vari-
ations, DMRs, or DEGs, we categorized them in detail. Indi-
vidual functional modules included genomic, epigenetic, 
and transcriptomic features (Fig. 4B). As an example, the 125 

MASLD-associated features related to cytokine responses in-
cluded 98 DEGs, 2 DMRs, 23 genes with variations, and 2 
genes involved in DEGs/variations (Fig. 4C). We found 
MASLD-associated features appearing in one or more func-

Figure 5. Using machine learning modeling to select features that permit MASLD stage discrimination. (A) Feature selection via machine 
learning modeling. (B) 203 stacked features obtained from 16 independent models. (C) Designing the signature gene set consisting of the top-
ranked genes that provided the highest accuracy. (D) Dot plot of signature gene sets of various sizes against their accuracy in discriminating 
MASLD stages. The chosen gene set is indicated (ACC=0.955). (E) ROC curve plots showing the accuracy of the 6 signature gene set and indi-
vidual genes (6 signature set P-value=1.04E-19; CAPG P-value=2.48E-14; HYAL3 P-value=1.26E-11; WIPI1 P-value=1.57E-10; TREM2 P-
value=3.64E-13; SPP1 P-value=1.28E-12; RNASE6 P-value=9.19E-07). (F) ROC curve plots indicating the accuracy of non-invasive indices and the 
signature gene set (6 signature set P-value=1.04E-19; FIB-4 P-value=4.48E-04; Hepatic Steatosis Index P-value=5.11E-02; NAFLD fibrosis score 
P-value=5.50E-02). MASLD, metabolic dysfunction-associated steatotic liver disease; ACC, accuracy; ROC, receiver operating characteristic.
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tional modules, both specifically and sometimes redundantly 
(Fig. 4D). They also showed strong cooperation within 
MASLD-associated functional modules (Fig. 4E and Supple-
mentary Fig. 3). Thus, MASLD-associated features were con-
nected primarily to representative functional modules relat-
ed to MASLD, collaborating with one another within their 
functional modules. This suggests MASLD-associated varia-
tions, differential methylated regions, and expression chang-
es have a close relationship with one another.

Identification of signature genes through 
feature selection

To ascertain the signature gene set for diagnosis of MASLD 
stages, we established machine learning modeling with fea-
ture selection (Fig. 5A). To prevent bias in the feature selec-
tion process, we randomly divided the samples in our cohort: 
70% were assigned to a training set and 30% to a testing set. 
We started with 14,396 genes and robust scaling was pro-
cessed to individually normalize the expressions (Supple-
mentary Fig. 4). Then, redundant features were eliminated by 

Figure 6. Application of the signature gene set to MASLD progression. (A) ROC curve plots describing the ratio of the true positive rate (TPR) 
and false positive rate (FPR) for the GLM designed using the signature gene set when predicting results from an independent cohort of normal 
(n=10), steatosis (n=51) and MASH (n=155) samples (Steatosis vs. MASH(F0-F4) P-value=1.28E-10; Steatosis vs. MASH(F0-F2) P-value=9.03E-08; 
Steatosis vs. MASH(F3-F4) P-value=7.00E-12; Normal vs. MASLD P-value=3.07E-07; Normal vs. Steatosis P-value=4.67E-06; Normal vs. MASH P-
value=2.00E-07). (B) Validation of the accuracy of the signature gene set between various histological features related to MASLD (Steatosis 
grade P-value=2.29E-05; Lobular inflammation P-value= 1.48E-05; NAFLD activity score P-value=4.31E-09; Fibrosis stage P-value=8.51E-07; 
Cytological ballooning P-value=2.75E-05). (C) Heatmap showing the expression levels of the signature genes from normal, steatosis, and MASH 
samples. (D) The expression levels of signature genes in subgroups of histological features related to MASLD. (E) H&E and PAS staining show-
ing liver morphology changes in an in vivo model fed an HFD compared to an LFD (Top). Expression levels of the signature genes in an in vivo 
model measured by qRT-PCR (Bottom). (F) Representative bright-field images showing morphology changes in mouse hepatic organoids 
treated with 1 mM FFA. Oil red O staining showed lipid accumulation in organoids treated with 1 mM FFA, mimicking hepatic steatosis (Top). 
Relative mRNA expression levels of the signature genes in mouse hepatic organoids treated with 1 mM FFA (Bottom). (Student’s t-test, P-value; 
*<0.05, **<0.01, ***<0.001). MASLD, metabolic dysfunction-associated steatotic liver disease; ROC, receiver operating characteristic; GLM, gen-
eralized linear regression model; MASH, metabolic dysfunction-associated steatohepatitis; FFA, free fatty acid.
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repeating linear SVM modeling until less than 1,500 features 
with optimum coefficient scores remained. The ~1,500 se-
lected features were placed in a testing set to evaluate their 
accuracy through RBF kernel model with optimal parameters. 
Finally, we established 20 machine learning models for 
MASLD-stage discrimination and found 16 models with over 
80% accuracy (ACC) (Supplementary Fig. 5A).

Next, to identify signature genes from the selected features 
through machine learning modeling, we first asked whether 
there are similarities between the selected features (Fig. 5B). 
We found that 203 features were shared across 16 individual 
models, and we designated these “stacked features”. Then, 
we looked at the features shared between the 203 stacked 
features and the 1,955 MASLD-associated features obtained 
from multi-omics analysis. We selected 64 features for fur-
ther analysis and used them to discover an optimal combina-
tion of signature genes by generalized linear regression 
model (GLM) (Fig. 5C). First, after measuring the accuracy of 
the 64 features independently, we ranked them by an accu-
racy score. CAPG had the highest accuracy score (ACC=0.82) 
(Supplementary Fig. 5B and Supplementary Table 6). Then, 
we tried to identify the genes that gave the highest accuracy 
when paired with CAPG. This process was repeated with one 
feature after another, considering only those features that 
maintained a combined accuracy as high as the other models 

with more features (Fig. 5D and Supplementary Table 7). We 
found that the accuracy of combined gene set increased as 
features were added to it, but a combination of 6 genes satu-
rated at the highest level of accuracy. In this way, we identi-
fied a set of 6 signature genes—CAPG, HYAL3, WIPI1, TREM2, 
SPP1, and RNASE6—that yielded the highest accuracy in 
MASLD stage discrimination. We improved the discriminabil-
ity of steatosis and MASH samples by applying only the 6 sig-
nature genes compared with either data from whole tran-
scriptome or 1,393 DEGs (Supplementary Fig. 6). Moreover, 
we confirmed that utilizing a set of genes enhances the abili-
ty to distinguish MASLD stages compared to individual genes 
(Fig. 5E), as well as non-invasive markers, such as non-alco-
holic fatty liver disease (NAFLD) fibrosis score, FIB-4, and He-
patic Steatosis Index (HSI) (Fig. 5F).20-22 Together, we propose 
that the 6 signature genes identified using machine learning 
modeling are essential molecular markers for assessing 
MASLD progression. 

Application of the signature gene set to liver 
disease 

To determine whether signature genes can be applied to 
the full spectrum of MASLD-associated disease and related 
histological features, we calculated its accuracy in diagnosing 
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an independent cohort of 216 samples comprising 10 nor-
mal, 51 steatosis, and 155 MASH samples (Fig. 6A, GSE135251) 
and a cohort of 78 samples comprising 6 normal and 72 
MASLD samples, providing information on steatosis, inflam-
mation, ballooning hepatocyte, and liver fibrosis stage (Fig. 
6B, GSE130970).10,17 When we plotted ROC curve plots, we 
found that the signature gene set discriminates between ste-
atosis and MASH (F0-F4) with an AUC score of 0.795 (Fig. 6A). 
Since MASH samples were graded F0 to F4 according to dis-
ease progression, we further analyzed the early-stage MASH 
groups (F0-2) and the late-stage MASH groups (F3-4). When 
predicting the groups, steatosis samples from the early-stage 
MASH (F0-2) samples that were relatively close in disease 
progression, the performance was still high accuracy 
(AUC=0.767). Further, in distinguishing steatosis from late-
stage MASH (F3-4), which show significantly different levels 
of disease progression, the signature gene set predicted with 
high AUC score (AUC=0.863). Next, we were interested on the 
possibility to extend the coverage of signature gene set from 
normal to whole spectrum of MASLD. By applying the com-
bination gene set of signature genes, it was possible to dis-
tinguish between normal and whole MASLD with very pre-
cisely (AUC=0.968). Also, normal and steatosis tissues 

(AUC=0.947), and normal and MASH tissues (AUC=0.979) 
showed highly accurate results. Furthermore, we confirmed 
that the signature gene set accurately distinguished the de-
gree of lobular inflammation (AUC=0.931) and steatosis grade 
(AUC=0.943) (Fig. 6B). Although the AUC for distinguishing 
cytological ballooning was about 0.765, the accuracy be-
tween fibrosis stages was over 0.838, with an AUC value of 
0.857 confirmed for the NAFLD activity score. The expression 
level of each signature genes was confirmed for normal, ste-
atosis, and MASH and as expected, their expression levels 
significantly increased with progression through the various 
stages of MASLD (Fig. 6C) and subgroups based on histologi-
cal features (Fig. 6D). These results suggest that the discrimi-
natory capacity of the signature gene set for distinguishing 
different stages of MASLD is comparable to that of histologi-
cal features.

We further examined the expression levels of the signature 
genes in an in vivo model fed a HFD (Fig. 6E) and in hepatic 
organoids treated with 1 mM FFA (Fig. 6F). In the in vivo 
model fed a HFD, signature gene levels were significantly in-
creased, consistent with a remarkable accumulation of fat in 
the liver when compared to controls (Fig. 6E). Moreover, we 
observed a similar increase in signature gene expression in 

Figure 7. Validation of the signature gene set in HCC. (A) ROC curve plots illustrating the ratio between the TPR and FPR of GLM designed 
with the signature genes in predicting the status of an independent cohort of samples for control (n=50) and liver cancer (n=50) (6 signature 
set P-value=2.66E-16; CAPG P-value=3.00E-13; HYAL3 P-value=1.34E-03; WIPI1 P-value=5.68E-02; TREM2 P-value=9.64E-12; SPP1 P-
value=1.34E-03; RNASE6 P-value=9.91E-01). (B) Kaplan-Meier survival plots showing the survival rates according to the expression levels of the 
signature genes in liver cancer. HCC, hepatocellular carcinoma; ROC, receiver operating characteristic; TPR, true positive rate; FPR, false positive 
rate; GLM, generalized linear regression model.
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organoids induced to accumulate lipid by treatment with 1 
mM FFAs (Fig. 6F and Supplementary Fig. 7). These results 
demonstrate that our signature gene set not only differenti-
ates steatosis from MASH in MASLD progression, but also 
normal tissue from steatosis. This means it can be used in the 
early-stage detection of MASLD.

Next, we asked whether the signature gene set could be 
applied to the detection of liver cancer—which often follow 
MASLD (Fig. 7). RNA-seq data from liver cancer patients re-
ported in a previous study (GSE77314) were re-analyzed to 
validate the combination set of signature genes.23 The accu-
racy to distinguish between control and cancer was calculat-
ed by GLM. Soundingly, the accuracy between control and 
liver cancer was exceedingly high (ACC=0.970, Fig. 7A). In ad-
dition, we found high expression of signature genes showed 
correlation with poor overall liver cancer survival (Fig. 7B). 
Taken together, changes in signature gene expression can 
distinguish not only MASLD progression but also normal tis-
sue from liver cancer. This indicates that our set of 6 signature 

genes can be used as biomarkers for the full spectrum of 
MASLD-associated disease.

Chromatin accessibility of signature genes  

Since chromatin accessibility contributes strongly to gene 
expression, we further examined changes in chromatin ac-
cessibility at signature gene loci by analyzing ATAC-seq on 
representative steatosis (n=4) and MASH (n=4) samples (PRJ-
NA725028, Fig. 8).24 Because the signature genes are also 
MASH-enriched genes, we first investigated the accessibility 
status for the promoters of MASH-enriched genes. We found 
accessibility enrichment at these promoters was significantly 
increased in MASH samples (Fig. 8A). Furthermore, we con-
firmed that the enrichment of open chromatin regions at sig-
nature gene loci was remarkably increased in MASH (Fig. 8B). 
We also estimated the combination of the chromatin accessi-
bility scores for the signature genes using PCA and found 
that also could predict disease progression (Fig. 8C). Figure 

Figure 8. Altered chromatin accessibility of signature genes in MASLD progression. (A) Density plot of chromatin accessibility in the promoter 
regions of MASH-enriched genes. (B) Heatmap showing enrichment of open chromatin structures in regions associated with the signature 
genes scaled according to their z-score. (C) PCA plot representing the ability of chromatin accessibility status to discriminate MASLD stages. (D) 
Snapshots showing increased chromatin accessibility at open chromatin regions annotated to CAPG and HYAL3 in MASH samples compared to 
steatosis samples. MASLD, metabolic dysfunction-associated steatotic liver disease; MASH, metabolic dysfunction-associated steatohepatitis; 
PCA, principal component analysis.
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8D illustrated the increased enrichment of open chromatin 
regions at CAPG and HYAL3 loci in MASH compared to steato-
sis samples. These results indicate both signature gene ex-
pression and chromatin accessibility can act as biomarkers 
for MASLD progression. 

DISCUSSION

This study identified MASLD-associated features through 
integrative genomic, epigenomic, and transcriptomic analy-
ses of samples from 134 MASLD patients. We used machine 
learning modeling to select from these MASLD-associated 
features those that could be used to accurately distinguish 
the stages of MASLD, and then we validated this signature 
gene set in independent cohorts of MASLD and liver cancer 
patients. Thus, our results provide diagnostic biomarkers that 
can accurately discriminate the various stages of MASLD-as-
sociated disease.

As big data technologies continue to emerge, machine 
learning and artificial intelligence (AI) are increasingly being 
applied to diagnose various human diseases and make deci-
sions regarding their treatment.25 In previous studies, histo-
logical images and/or clinical information have been used as 
inputs for deep learning or machine learning models de-
signed to predict disease progression. In addition, MASLD re-
searchers have used histological images to predict fibrosis 
scores in MASH patients and clinical information to distin-
guish healthy patients from those suffering from MASH.26,27 
Recently, the researchers tried to apply machine learning for 
MASLD study.28 One study used lipidomics data and machine 
learning to detect MASLD and other study used public data 
(NIDDK NAFLD data and Optum data) to predict MASH.29,30 
Although they had delivered interesting results, the possibili-
ty of clinical application may be limited because of either 
limited data source (lipidomics only or no omics data) or poor 
AUC (model with AUC 0.82 or 0.76). In our machine learning 
modeling approach using molecular features, we identified a 
signature gene comprising CAPG, HYAL3, WIPI1, TREM2, SPP1, 
and RNASE6, which can discern the various stages of MASLD 
with high accuracy (Fig. 6A, normal vs MASLD AUC=0.968; 
normal vs. MASH AUC=0.979). Additionally, the signature 
gene set demonstrated high accuracy in discriminating be-
tween histological feature-based subgroups related to 
MASLD, achieving effective performance (Fig. 6B, AUC=0.931 

for lobular inflammation; AUC=0.943 for steatosis grade; 
AUC=0.838 for fibrosis stage). We also confirmed that the di-
agnostic performance of the signature gene set could accu-
rately distinguish disease stages with high accuracy across 
various subgroups associated with MASLD, including obesity, 
PNPLA3 mutation, and diabetes, which are known to have 
close connections with MASLD (Supplementary Fig. 8). These 
results indicate that the signature gene set identified in this 
study could be applied to various subgroups related to 
MASLD, demonstrating its potential as a diagnostic marker. 

There is no uncertainty regarding the distinct functional 
roles of individual genes within the signature gene set in hu-
man diseases, as their expression escalates with the progres-
sion of MASLD. However, the degree of expression alterations 
for individual genes exhibits variability among different sub-
groups associated with MASLD (Fig. 6C and 6D), and the di-
agnostic capabilities of individual genes diverge (Fig. 5E). This 
emphasizes the need for a signature gene set, rather than re-
lying on individual genes, to diagnose the stage of the dis-
ease. Using the signature gene set to assess disease stages in 
diverse subgroups of MASLD yielded the highest accuracy 
(Supplementary Fig. 9), surpassing that of non-invasive as-
sessments (Fig. 5F). Furthermore, we explored the potential 
use of the signature genes as non-invasive markers and con-
firmed their ability to discriminate with an AUC of 0.76 be-
tween normal and MASLD in cell-free RNAs in blood (Supple-
mentary Fig. 10). This highlights the superior precision 
achieved with the signature gene set in evaluating MASLD 
progression.

In summary, using a multi-omics approach coupled with 
feature selection via machine learning modeling, we identi-
fied a signature gene set that can accurately predict the stag-
es of MASLD. We found this signature gene set can be ap-
plied to the full MASLD spectrum, from normal tissue to 
MASLD-related cancer. Our current understanding of this sig-
nature gene set has provided markers for the diagnosis of 
MASLD, but further study will be required for clinical applica-
tion with larger patient cohort and functional analysis of sig-
nature genes.
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